Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

A Sensitivity analysis for construction of the seismic response analysis model of a nuclear reactor building by using a three-dimensional finite element model

Choi, B.; Nishida, Akemi; Nakajima, Norihiro

Kozo Kogaku Rombunshu, B, 63B, p.325 - 333, 2017/03

The Japan Atomic Energy Agency promotes research and development of three-dimensional vibration simulation technologies for nuclear facilities. In this paper, we report a seismic response analysis of the Tohoku Pacific Coast Earthquake using three-dimensional models of the High-Temperature Engineering Test Reactor (HTTR) building. We conducted a sensitivity study using input parameters with uncertainty. Furthermore, we examined the variation of the seismic response results against the input parameters.

Oral presentation

A Sensitivity analysis for construction of the seismic response analysis model of a nuclear reactor building by using a three-dimensional finite element model

Choi, B.; Nishida, Akemi; Nakajima, Norihiro

no journal, , 

Research and development of three-dimensional vibration simulation technologies for nuclear facilities is one mission of the Japan Atomic Energy Agency (JAEA). In this paper, we report a seismic response analysis of the 2011 off the Pacific coast of Tohoku Earthquake using three-dimensional models of the High-Temperature Engineering Test Reactor (HTTR) building. We performed a parametric study by using uncertainty parameters. Furthermore, we examined the variation in the response result for the uncertainty parameters to create a valid 3D finite element model.

2 (Records 1-2 displayed on this page)
  • 1